Electrochemical Activity of Dendrimer-Stabilized Tin Nanoparticles for Lithium Alloying Reactions.
نویسندگان
چکیده
The synthesis and characterization of Sn nanoparticles in organic solvents using sixth-generation dendrimers modified on their periphery with hydrophobic groups as stabilizers are reported. Sn(2+):dendrimer ratios of 147 and 225 were employed for the synthesis, corresponding to formation of Sn147 and Sn225 dendrimer-stabilized nanoparticles (DSNs). Transmission electron microscopy analysis indicated the presence of ultrasmall Sn nanoparticles having an average size of 3.0-5.0 nm. X-ray absorption spectroscopy suggested the presence of Sn nanoparticles with only partially oxidized surfaces. Cyclic voltammetry studies of the Sn DSNs for Li alloying/dealloying reactions demonstrated good reversibility. Control experiments carried out in the absence of DSNs clearly indicated that these ultrasmall Sn DSNs react directly with Li to form SnLi alloys.
منابع مشابه
Electrochemical Evaluation of PbO Nanoparticles as Anode for Lithium Ion Batteries (Technical Note)
PbO nanoparticles were synthesized using hydrothermal process. Scanning electron microscopy (SEM) was used in order to investigate of PbO powders. X-ray diffraction (XRD) pattern confirmed β-PbO formation during this process. The crystallite size of the powders was calculated using Scherrer formula about 74.6 nm. Electrochemical evaluation of the PbO nanoparticles as anode for Li-ion batteries ...
متن کاملHighly Conductive In-SnO2/RGO Nano-Heterostructures with Improved Lithium-Ion Battery Performance
The increasing demand of emerging technologies for high energy density electrochemical storage has led many researchers to look for alternative anode materials to graphite. The most promising conversion and alloying materials do not yet possess acceptable cycle life or rate capability. In this work, we use tin oxide, SnO2, as a representative anode material to explore the influence of graphene ...
متن کاملUltrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries.
A morphology-conserved transformation yields Sn@C nanowires (UTP@CW, ∼21 wt% carbon and ∼77 wt% tin) with a high encapsulation density of ultrafine tin nanoparticles in porous carbon nanowires, which exhibit excellent reversible capacities and cycling performance for lithium ion batteries, especially at high current rates.
متن کاملC3ta01272g 5709..5714
Significant efforts have been devoted to synthesis and characterization of engineered silicon nanostructures able to withstand the large stresses and strains produced by lithium alloying/dealloying reactions during electrochemical cycling. Less attention has been given to ensuring robust connection between silicon and its host structure in the anode. The current work develops a new methodology ...
متن کاملTin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries.
Tin nanoparticles encapsulated in porous multichannel carbon microtubes (denoted as SPMCTs) were prepared by carbonization of electrospun PAN-PMMA-tin octoate nanofibers fabricated using a single-nozzle electrospinning technique. This material exhibited excellent characteristics for lithium ion battery anode applications in terms of reversible capacities, cycling performance, and rate capabilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 31 23 شماره
صفحات -
تاریخ انتشار 2015